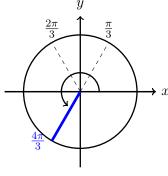
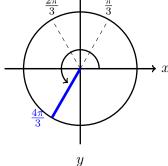
Tutorato – Soluzione esercitazione 3

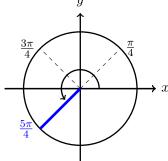
1. Disegnare i seguenti angoli sulla circonferenza goniometrica e calcolarne seno, coseno e tangente.

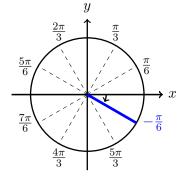
$$\frac{4\pi}{3}, \frac{5\pi}{4}, -\frac{\pi}{6}, \frac{9\pi}{4}, -\frac{10\pi}{3}.$$

Soluzione









$$\sin\left(\frac{4\pi}{3}\right) = \sin\left(\pi + \frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

$$\cos\left(\frac{4\pi}{3}\right) = \cos\left(\pi + \frac{\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2}$$

$$\tan\left(\frac{4\pi}{3}\right) = \frac{\sin\left(\frac{4\pi}{3}\right)}{\cos\left(\frac{4\pi}{3}\right)} = \frac{-\sqrt{3}/2}{-1/2} = \sqrt{3}.$$

$$\sin\left(\frac{5\pi}{4}\right) = \sin\left(\pi + \frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

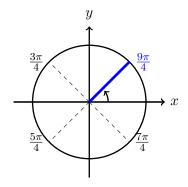
$$\cos\left(\frac{5\pi}{4}\right) = \cos\left(\pi + \frac{\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$\tan\left(\frac{5\pi}{4}\right) = \frac{\sin\left(\frac{5\pi}{4}\right)}{\cos\left(\frac{5\pi}{4}\right)} = \frac{-\sqrt{2}/2}{-\sqrt{2}/2} = 1.$$

$$\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}$$

$$\cos\left(-\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

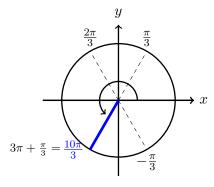
$$\tan\left(-\frac{\pi}{6}\right) = \frac{\sin\left(-\frac{\pi}{6}\right)}{\cos\left(-\frac{\pi}{6}\right)} = -\frac{1}{\sqrt{3}}.$$



$$\sin\left(\frac{9\pi}{4}\right) = \sin\left(2\pi + \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\cos\left(\frac{9\pi}{4}\right) = \cos\left(2\pi + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\tan\left(\frac{9\pi}{4}\right) = \frac{\sin\left(\frac{9\pi}{4}\right)}{\cos\left(\frac{9\pi}{4}\right)} = \frac{\sqrt{2}/2}{\sqrt{2}/2} = 1.$$



$$\sin\left(\frac{10\pi}{3}\right) = \sin\left(\frac{9\pi}{3} + \frac{\pi}{3}\right) = \sin\left(3\pi + \frac{\pi}{3}\right) =$$

$$= \sin\left(\pi + \frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}.$$

$$\cos\left(\frac{10\pi}{3}\right) = \cos\left(3\pi + \frac{\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2}$$

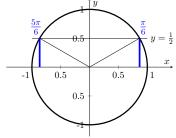
$$\tan\left(\frac{10\pi}{3}\right) = \frac{\sin\left(\frac{10\pi}{3}\right)}{\cos\left(\frac{10\pi}{3}\right)} = \frac{-\sqrt{3}/2}{-1/2} = \sqrt{3}.$$

2. Risolvere le seguenti equazioni trigonometriche per $0 \le x \le 2\pi$.

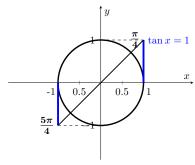
- (a) $\sin(x) = 1/2$
- (b) $\cos(x) = \frac{3}{2}$
- (c) $\tan(x) = 1$
- (d) $\sin^2 x = \frac{3}{4}$

Soluzione

(a) Usiamo la circonferenza goniometrica, e disegniamo la retta $y=\frac{1}{2}$. Vediamo quindi che $\sin x=\frac{1}{2}$ per $x=\frac{\pi}{6}$ o $x=\frac{5\pi}{6}$



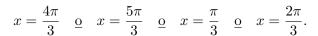
- (b) Il coseno non può mai essere maggiore di 1, $-1 \le \cos x \le 1$, mentre $\frac{3}{2}$ lo è, $\frac{3}{2} > 1$. Di conseguenza, l'equazione non ha soluzione.
- (c) Il campo di esistenza della tangente, per $x \in [0, 2\pi]$, è $x \neq \frac{\pi}{2}$ e $x \neq \frac{3\pi}{2}$. La tangente vale uno per angoli il cui coseno e seno sono uguali. Osservando la circonferenza goniometrica, questo vale per $x = \pi/4$ e, essendo la periodicità della tangente π , per $\frac{5\pi}{4}$.

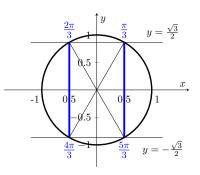


(d) Sostituendo $t = \sin x$, e risolvendo l'equazione quadratica $t^2 = \frac{3}{4}$, si ottiene che deve valere:

$$\sin x = -\frac{\sqrt{3}}{2} \quad \underline{0} \quad \sin x = \frac{\sqrt{3}}{2}.$$

Disegniamo le rette $y=\pm\frac{\sqrt{3}}{2}$ sulla circonferenza goniometrica. Troviamo quindi





- 3. Risolvere, per $0 \le x \le 2\pi$,
 - (a) $1 + \frac{1}{2}\sin(2x) = \cos^2 x$,
 - (b) $\cos x \left(\sin^2 x \frac{1}{2}\right) \left(\cos^2 x + \frac{1}{2}\right) = 0.$
 - (c) $\cos 2x \cos x = 0.$
 - (d) $\frac{\sqrt{3} \tan(x)}{1 + \sin(x)} = 0$.

Soluzione

(a) Portiamo $\cos^2 x$ a sinistra, e utilizziamo che $\sin^2 x + \cos^2 x = 1 \iff 1 - \cos^2 x = \sin^2 x$. L'equazione diventa

$$\sin^2 x + \frac{1}{2}\sin(2x) = 0.$$

Utilizziamo ora la formula di duplicazione $\sin(2x) = 2\sin x \cos x$, ottenendo

$$\sin^2 x + \sin(x)\cos x = 0.$$

Raccogliendo $\sin x$,

$$\sin x(\sin x + \cos x) = 0.$$

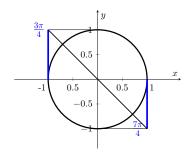
Per la legge di annullamento del prodotto deve quindi valere

$$\sin x = 0 \quad \text{o} \quad \sin x + \cos x = 0.$$

Ossia, per $0 \le x \le 2\pi$,

$$x = 0$$
 o $x = \pi$ o $x = 2\pi$ o $\sin x = -\cos x$.

Guardiamo l'equazione più a destra. Poiché i valori $x = \frac{\pi}{2}, \frac{3\pi}{2}$, dove il coseno si annulla, non sono soluzioni, possiamo dividere l'equazione per $\cos x$, ottenendo $\tan x = -1$. Guardiamo la circonferenza goniometrica:



La tangente vale quindi -1 per $x=\frac{3\pi}{4}$ e $x=\frac{7\pi}{4}$. In conclusione, la soluzione dell'equazione di partenza è

$$x=0$$
 $\underline{\mathbf{o}}$ $x=\pi$ $\underline{\mathbf{o}}$ $x=2\pi$ $\underline{\mathbf{o}}$ $x=\frac{3\pi}{4}$ $\underline{\mathbf{o}}$ $x=\frac{7\pi}{4}$.

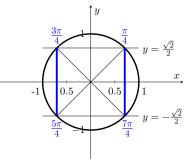
(b) Per la legge di annullamento del prodotto, abbiamo che

$$\cos x = 0$$
 \underline{o} $\sin^2 x = \frac{1}{2}$ \underline{o} $\cos^2 x = -\frac{1}{2}$.

Essendo $\cos^2 x$ sempre positivo, l'ultima equazione a destra non ha soluzione. Le altre due invece danno

$$x = \frac{\pi}{2}$$
 o $x = \frac{3\pi}{2}$ o $\sin x = \frac{\sqrt{2}}{2}$ o $\sin x = -\frac{\sqrt{2}}{2}$.

Utilizziamo la circonferenza goniometrica per risolvere la terza e quarta equazione. Disegniamo le rette $y=\pm\sqrt{2}/2$ e troviamo che la prima equazione è risolta per $x=\frac{\pi}{4}$ e $x=\frac{3\pi}{4}$, mentre la seconda è risolta per $x=\frac{5\pi}{4}$ e $x=\frac{7\pi}{4}$. La soluzione complessiva dell'equazione di partenza in $[0,2\pi]$ è dunque



$$x = \frac{\pi}{2} \quad \underline{\mathbf{o}} \quad x = \frac{3\pi}{2} \quad \underline{\mathbf{o}} \quad x = \frac{\pi}{4} \quad \underline{\mathbf{o}} \quad x = \frac{3\pi}{4} \quad \underline{\mathbf{o}} \quad x = \frac{5\pi}{4} \quad \underline{\mathbf{o}} \quad x = \frac{7\pi}{4}.$$

(c) Utilizzando la formula di duplicazione $\cos(2x) = 2\cos^2 x - 1$, l'equazione diventa

$$2\cos^2 x - 1 - \cos x = 0$$

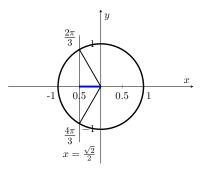
Questa è un'equazione quadratica in $\cos x$. Sostituendo $\cos x = t$, dobbiamo quindi risolvere $2t^2 - t - 1 = 0$. Per farlo calcoliamo il Δ : $\Delta = 1 - 4 \cdot (2) \cdot (-1) = 9$. Perciò le soluzioni sono

$$t = \frac{1+\sqrt{9}}{4} = 1$$
 o $t = \frac{1-\sqrt{9}}{4} = -\frac{1}{2}$.

Queste sono le soluzioni per il coseno, perciò dobbiamo ora risolvere:

$$\cos x = 1$$
 \underline{o} $\cos x = -\frac{1}{2}$.

La prima vale per x=0 e $x=2\pi$. La seconda, guardando la circonferenza goniometrica, vale per $x=2\pi/3$ e, siccome $\cos(\pi-x)=\cos(\pi+x)$, per $\pi+\frac{\pi}{3}=\frac{4\pi}{3}$. Le soluzioni dell'equazione di partenza sono quindi:



$$x = 0$$
 \underline{o} $x = 2\pi$ \underline{o} $x = \frac{2\pi}{3}$ \underline{o} $x = \frac{4\pi}{3}$.

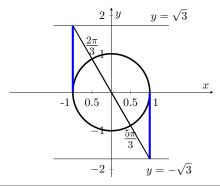
(d) Affinché la frazione a sinistra abbia senso, il denominatore deve essere non nullo e la tangente deve essere definita, perciò dobbiamo imporre

$$1 + \sin x \neq 0 \iff \sin x \neq -1 \iff x \neq \frac{3\pi}{2}$$

e anche $x \neq \frac{\pi}{2}$. Ora, per trovare dove la frazione si annulla, cerchiamo gli zeri del numeratore.

$$\sqrt{3} - \tan x = 0 \iff \tan x = -\sqrt{3}.$$

Guardando la circonferenza goniometrica, questa equazione è risolta in $[0, 2\pi]$ per $\frac{2\pi}{3}$ e $\frac{5\pi}{3}$.

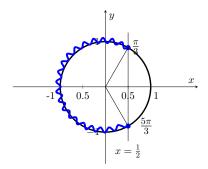


- 4. Risolvere le seguenti disequazioni trigonometriche per $0 \le x \le 2\pi$, e rappresentare la soluzione sulla circonferenza goniometrica.
 - (a) $\cos(x) \le \frac{1}{2}$,
 - (b) $\tan x > 1$,
 - (c) $\frac{1}{2} < \sin x \le \frac{\sqrt{3}}{2}$.

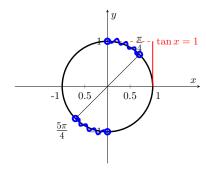
Soluzione

(a) Dalla circonferenza goniometrica vediamo che il coseno vale 1/2 per $x=\pi/3$ e $x=5\pi/3$. Sappiamo che assume valori minori o uguali a 1/2 in $[0,2\pi]$ per

$$\frac{\pi}{3} \le x \le \frac{5\pi}{3}$$



(b) Usando la circonferenza goniometrica, troviamo che la tangente vale uno per $x=\frac{\pi}{4}$ e $\frac{5\pi}{4}$. La tangente diventa maggiore di uno per angoli maggiori di questi fino a che si raggiunge l'asintoto successivo, situato rispettivamente a $x=\frac{\pi}{2}$ e $x=\frac{3\pi}{2}$.

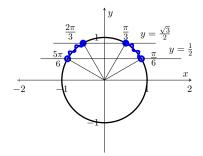


Perciò

$$\frac{\pi}{4} < x < \frac{\pi}{2}$$
 o $\frac{5\pi}{4} < x < \frac{3\pi}{2}$.

(c) Utilizziamo la circonferenza goniometrica e tracciamo le rette $y=\frac{1}{2}$ e $y=\frac{\sqrt{3}}{2}$. Osserviamo quindi che deve valere

$$\frac{\pi}{6} < x \le \frac{\pi}{3} \quad \underline{\mathbf{o}} \quad \frac{2\pi}{3} \le x < \frac{5\pi}{6}.$$



5. Risolvere

(a)
$$|x^2 - 4x| \le 0$$
,

(b)
$$4 + x = |5 - 2x| + 7x$$
,

(c)
$$|3x - 4| < 2x + 5$$
.

Soluzione

(a) La quantità a sinistra, essendo un valore assoluto, non può essere negativa. Di conseguenza la disequazione ha soluzione solo quando l'uguaglianza è soddisfatta:

$$|x^2 - 4x| = 0 \iff x^2 - 4x = 0 \iff x(x - 4) = 0 \iff x = 0 \text{ o } x = 4.$$

(b) Isoliamo il valore assoluto: |5-2x|=4-6x. Ora possiamo impostare il sistema

$$|a(x)| = b(x) \iff \begin{cases} b(x) \ge 0 \\ a(x) = b(x) \end{cases} \quad \underline{0} \quad \begin{cases} b(x) \ge 0 \\ a(x) = -b(x) \end{cases}$$

che dà per il nostro caso

$$\iff \begin{cases} 4 - 6x \ge 0 \\ 5 - 2x = 4 - 6x \end{cases} \quad \underline{0} \quad \begin{cases} 4 - 6x \ge 0 \\ 5 - 2x = 6x - 4 \end{cases} \quad \iff \begin{cases} 6x \le 4 \\ 4x = -1 \end{cases} \quad \underline{0} \quad \begin{cases} 6x \le 4 \\ 8x = 9 \end{cases}$$

$$\iff \begin{cases} x \le \frac{2}{3} \\ x = -\frac{1}{4} \end{cases} \quad \underline{0} \quad \begin{cases} x \le \frac{2}{3} \\ x = \frac{9}{8} \end{cases} \quad \iff x = -\frac{1}{4}.$$

L'unica soluzione è $x=-\frac{1}{4}$ in quanto il sistema di destra non ha soluzione.

(c) Impostiamo il sistema

$$|a(x)| < b(x) \iff -b(x) < a(x) < b(x),$$

che dà

$$|3x - 4| < 2x + 5 \iff -2x - 5 < 3x - 4 < 2x + 5 \iff \begin{cases} 3x - 4 > -2x - 5 \\ 3x - 4 < 2x + 5 \end{cases}$$

6

$$\iff \begin{cases} 5x > -1 \\ x < 9 \end{cases} \iff \begin{cases} x > -\frac{1}{5} \\ x < 9 \end{cases}$$

La soluzione è dunque $x \in \left(-\frac{1}{5}, 9\right)$.

6. Risolvere

$$\frac{|2x^2 - 2| - x^2}{x} < 1.$$

Soluzione

Affinché la frazione abbia senso, deve valere $x \neq 0$. Portiamo a sinistra 1 e mettiamo gli addendi a denominatore comune, ottenendo:

$$\frac{|2x^2 - 2| - x^2 - x}{x} < 0. ag{1}$$

Studiamo il segno del numeratore

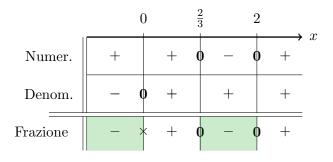
$$|2x^2 - 2| - x^2 - x > 0. (2)$$

Isoliamo il valore assoluto $|2x^2-2| \ge x^2+x$. e, ricordando che $|a(x)| \ge b(x) \iff a(x) \le -b(x)$ o $a(x) \ge b(x)$, impostiamo

$$2x^2 - 2 \le -x^2 - x$$
 o $2x^2 - 2 \ge x^2 + x$.
 $\iff 3x^2 + x - 2 \le 0$ o $x^2 - x - 2 \ge 0$.

Usando la regola di somma e prodotto, il membro di sinistra della disequazione di destra si fattorizza come (x+1)(x-2), perciò si annulla in -1 e 2. L'equazione associata descrive una parabola con concavità rivolta verso l'alto, perciò la soluzione della disequazione di destra è $x \le -1$ o $x \ge 2$. Per quanto riguarda la disequazione di sinistra, calcoliamo il Δ : $\Delta = 1 - 4 \cdot 3 \cdot (-2) = 25$. La soluzione dell'equazione associata è quindi x = 2/3 o x = -1. La parabola descritta dall'equazione ha di nuovo concavità rivolta verso l'alto e assume valori non positivi per $-1 \le x \le \frac{2}{3}$. Unendo le soluzioni delle due disequazioni di secondo grado otteniamo la soluzione della disequazione (2), ossia le regioni i cui il numeratore è non negativo:

$$x \le \frac{2}{3}$$
 o $x \ge 2$.



La frazione in Eq. (1) è negativa (e la disequazione di partenza è soddisfatta) per

$$x < 0 \quad \underline{o} \quad \frac{2}{3} < x < 2.$$

7. Risolvere

$$|x^2 - 4x + 3| \ge \frac{x^2}{3}.$$

Soluzione

Usando che $|a(x)| \ge b(x) \Longleftrightarrow a(x) \le -b(x)$ o $a(x) \ge b(x)$, impostiamo

$$x^{2} - 4x + 3 \le -\frac{x^{2}}{3}$$
 o $x^{2} - 4x + 3 \ge \frac{x^{2}}{3}$

$$\iff \frac{4}{3}x^2 - 4x + 3 \le 0 \quad \underline{0} \quad \frac{2}{3}x^2 - 4x + 3 \ge 0.$$

Il delta per la disequazione di sinistra è $\Delta_{\rm sx}=(-4)^2-4\cdot\frac{4}{3}\cdot 3=0$, perciò il membro a sinistra è un quadrato perfetto $\frac{4}{3}\left(x-\frac{3}{2}\right)^2$. La disequazione è soddisfata solo quando vale l'uguaglianza, ossia per $x=\frac{3}{2}$. Il delta per la disequazione di destra è $\Delta_{\rm dx}=(-4)^2-4\cdot\frac{2}{3}\cdot 3=8$. La parabola descritta dall'equazione associata tocca quindi l'asse x in $\frac{4\pm\sqrt{8}}{2\cdot\frac{2}{3}}=\frac{3}{4}(4\pm2\sqrt{2})=3\pm\frac{3}{\sqrt{2}}$, e ha concavità rivolta verso l'alto. La disequazione è dunque soddisfatta per $x\leq 3-\frac{3}{\sqrt{2}}$ o $x\geq 3+\frac{3}{\sqrt{2}}$. Per determinare la soluzione complessiva (unendo le soluzioni delle due disequazioni), ci resta da capire come è posizionato 3/2 sull'asse x rispetto a $3-\frac{3}{\sqrt{2}}$. Ci chiediamo quindi se

$$\frac{3}{2} > 3 - \frac{3}{\sqrt{2}} \quad \Longleftrightarrow \quad \frac{3}{\sqrt{2}} > 3 - \frac{3}{2} \quad \Longleftrightarrow \quad \frac{3}{\sqrt{2}} > \frac{3}{2} \quad \Longleftrightarrow \quad \frac{1}{\sqrt{2}} > \frac{1}{2} \quad \Longleftrightarrow \quad 2 > \sqrt{2}.$$

La disequazione è soddisfatta quindi 3/2 è maggiore di $3-\frac{3}{\sqrt{2}}$. La soluzione complessiva della disequazione di partenza è quindi

$$x \le 3 - \frac{3}{\sqrt{2}}$$
 o $x = \frac{3}{2}$ o $x \ge 3 + \frac{3}{\sqrt{2}}$.